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0.1. Arithmetic functions and Dirichlet series. An arithmetic
function is simply a function a : N → C on the natural numbers.
Examples are the constant function 1, the power functions nα.

The Dirichlet convolution of two arithmetic functions a, b : N → C
is defined by

a ∗ b(n) :=
∑
d|n

a(d)b(
n

d
)

For instance, if we denote by 1 the constant function 1, and

σ0(n) = #{d ≥ 1, d | n} =
∑
d|n

1

the number of divisors of n, then clearly

1 ∗ 1 = σ0

Likewise, the divisor sums

σα(n) =
∑
d|n

dα
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are clearly the convolution

σα = 1 ∗ nα

To any arithmetic function a : N → C, which is of polynomial
growth: |a(n)| � nA, we associate a Dirichlet series

Da(s) :=
∑
n≥1

a(n)n−s, Re(s) > A+ 1

which converges for Re(s) > A, and uniformly in any closed half-plane
Re(s) ≥ A+ δ, hence defines a holomorphic function for Re(s) > A.

For instance, for the constant function 1 we have

D1(s) =
∑
n≥1

1

ns
= ζ(s)

is the Riemann zeta function.
For the power function nα, we have∑

n≥1

nα

ns
= ζ(s− α), Re(s) > 1 + Re(α)

Lemma 0.1. The Dirichlet series attached to a convolution is the prod-
uct of the two Dirichlet series:

Da∗b(s) = Da(s)Db(s)

Corollary 0.2. The Dirichlet series Dα(s) =
∑

n≥1 σα(n)n−s associ-
ated to the divisors sum σα is the product

Dα(s) = ζ(s)ζ(s− α)

An arithmetic function is multiplicative if a(1) 6= 0 and a(mn) =
a(m)a(n) whenever m, n are coprime. Necessarily then a(1) = 1.

Examples: the constant function 1, the power functions nα are mul-
tiplicative (in fact completely multiplicative).

Lemma 0.3. If a, b : N→ C are multiplicative then so is their convo-
lution a ∗ b.

Since σα = 1 ∗ nα, we obtain

Lemma 0.4. The divisor sums σα are multiplicative: σα(mn) = σα(m)σα(n)
if gcd(m,n) = 1.

Exercise 1. The divisor sums σα satisfy for p prime and r ≥ 1

σα(p)σα(pr) = σα(pr+1) + pασα(pr−1)

Lemma 0.5. If a : N→ C is multiplicative then for Re(s)� 1,

Da(s) =
∏

p prime

∑
r≥0

a(pr)p−rs
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0.2. The Dirichlet series attached to a modular form. Let 0 6=
f ∈ Mk be a modular form of weight k, with Fourier expansion f =∑

n≥0 af (n)qn. The associated Dirichlet series is, for s ∈ C, Re(s)� 1

D(s, f) :=
∞∑
n=1

af (n)

ns

Note that we ignore the zero’th coefficient af (0). Recall that we showed
that for any F ∈ Mk, the Fourier coefficients satisfy |af (n)| � nk−1

(and better bounds for cusp forms). Hence the series converges for
Re(s) > k, and uniformly in any closed half-plane Re(s) ≥ k+δ, hence
defines a holomorphic function for Re(s)� 1.

0.3. Eisenstein series. The normalized Eisenstein series has Fourier
expansion

Ek = 1 + γk

∞∑
n=1

σk−1(n)qn

Hence the associated Dirichlet series is (a multiple of)

D(s) =
∑
n≥1

σk−1(n)qn

We have already computed this Dirichlet series, so that we find

D(s, Ek) = ζ(s)ζ(s− (k − 1))

0.4. Analytic continuation and functional equation. The Gamma
function is defined for Re(s) > 0 as

Γ(s) :=

∫ ∞
0

e−tts
dt

t

Integration by parts shows that in this regime, we have the functional
equation

Γ(s+ 1) = sΓ(s)

so that in particular we obtain that for n ≥ 1 integer, Γ(n + 1) = n!
and using the functional equation we obtain that Γ has meromorphic
continuation to the entire complex plane, save for simple poles at the
non-negative integers s = 0,−1,−2,−3, . . . .

Exercise 2. Compute the residue Ress=−n Γ(s).

Theorem 0.6. Let f ∈ Sk be a cusp form (k ≥ 12 even). Set
Λf (s) := (2π)−sΓ(s)D(s, f), initially defined for Re(s) � 1. Then
D(s, f) admits an analytic continuation to the entire complex plane,
and satisfies the functional equation

Λf (s) = i−kΛf (k − s)
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Proof. We first give an integral representation of Λf (s). Consider the
integral (Mellin transform)

I(s) =

∫ ∞
0

f(iy)ys
dy

y

Recall that a cusp form decays exponentially at infinity: |f(x+ iy)| �
e−2πy as y → +∞, so the integral converges at y =∞ for all s, and for
y → 0, we use the modular transformation formula f(−1/τ) = τ kf(τ)
for τ = iy

f(iy) = (
1

iy
)kf(− 1

iy
)

to deduce that |f(iy)| � y−ke−2π/y as y → 0, so that the integral also
converges at y = 0 if for all s. Hence I(s) is an entire function.

Now insert the Fourier expansion

f(iy) =
∑
n≥1

af (n)e−2πny

to find

I(s) =
∑
n≥1

af (n)

∫ ∞
0

e−2πnyys
dy

y

Changing variables gives∫ ∞
0

e−2πnyys
dy

y
= (2πn)−sΓ(s)

so that
I(s) = (2π)−sΓ(s)

∑
n≥1

af (n)n−s =: Λf (s)

which shows that Λf (s) is entire.
It remains to prove the functional equation. Separate the integral as

I(s) =

∫ 1

y=0

+

∫ ∞
1

Using the transformation formula for f , we write∫ 1

0

f(iy)ys
dy

y
=

∫ 1

0

(
1

iy
)kf(− 1

iy
)ys

dy

y
= i−k

∫ 1

0

f(
i

y
)ys−k

dy

y

Now change variables y′ = 1/y:

= i−k
∫ ∞
1

f(iy′)(y′)k−s
dy′

y′

so that we obtain

I(s) =

∫ ∞
1

f(iy)
(
ys + i−kyk−s

)dy
y
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Hence, using i−k = ik for k even,

I(k − s) =

∫ ∞
1

f(iy)
(
yk−s + i−kys

)dy
y

= ikI(s)

�

0.5. Analytic continuation and functional equation for Rie-
mann’s zeta function. The above proof of the functional equation
for Dirichlet series attached to cusp forms is modeled on one of Rie-
mann’s proofs of the corresponding fact for the Riemann zeta function,
except that there is an extra step which leads to a pole. The result is

Theorem 0.7. Let ζ∗(s) := π−s/2Γ( s
2
)ζ(s). Then ζ∗(s) is analytic

except for simple poles at s = 0 and s = 1, and has a functional
equation

ζ∗(s) = ζ∗(1− s)

Proof. The completed Riemann zeta function ζ∗ is essentially the Mellin
transform of the one variable theta function

θ(τ) =
∑
n∈Z

qn
2/2 =

∑
n∈Z

eiπn
2τ

Precisely, set

ω(y) =
1

2

(
θ(iy)− 1

)
=
∑
n≥1

e−πn
2y

and consider the integral

I(s) :=

∫ ∞
0

ω(y)ys/2
dy

y

The integral converges for all s at y =∞, since ω(y)� e−πy as y →∞.
To understand convergence at y = 0, recall the transformation for-

mula of the one-variable theta function

θ(−1/τ) =
√
−iτθ(τ)

In particular, taking τ = iy (which is the way we proved it...)

θ(
i

y
) =
√
yθ(iy)

so that as y → 0, since θ(iy)→ 1 as y → 0,

θ(iy) ∼ 1
√
y

and hence

ω(
1

y
) ∼ 1

2
√
y
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Thus the integral I(s) converges at y = 0 like that of
∫ 1

0
1

2
√
y
ys/2 dy

y
,

namely for Re(s) > 1.
Then for Re(s) > 1,

I(s) =
∑
n≥1

∫ ∞
0

e−πn
2yys/2

dy

y
=
∑
n≥1

(πn2)−s/2Γ(
s

2
) =: ζ∗(s)

Now split the integral as

I(s) =

∫ 1

0

+

∫ ∞
1

The integral
∫∞
1

is absolutely convergent for all s ∈ C so is an entire

function. To treat the integral
∫ 1

0
, change variables y = 1/t∫ 1

0

ω(y)ys/2
dy

y
=

∫ ∞
1

ω(
1

t
)t−s/2

dt

t

The functional equation of theta θ(i/t) =
√
tθ(it) gives

ω(
1

t
) =

1

2

(√
tθ(it)− 1

)
=
√
tω(t) +

√
t− 1

2

Hence ∫ ∞
1

ω(
1

t
)t−s/2

dt

t
=

∫ ∞
1

ω(t)t
1−s
2
dt

t
+

∫ ∞
1

√
t− 1

2
t−s/2

dt

t

The first integral converges for all s, hence is an entire function of s,
while the second integral is explicitly evaluated as∫ ∞

1

√
t− 1

2
t−s/2

dt

t
= − 1

1− s
− 1

s

Thus

ζ∗(s) = − 1

1− s
− 1

s
+

∫ ∞
1

ω(t)
(
t
s
2 + t

1−s
2

)dt
t

Both summands are clearly symmetric under s 7→ 1−s, so that ζ∗(s) =
ζ∗(1 − s), and the integral is entire, and so we find that ζ∗(s) has an
analytic continuation to all of C except for simple poles at s = 0, 1. �

Corollary 0.8. The Riemann zeta function has an analytic continu-
ation to the entire complex plane except for a simple pole at s = 1,
where Ress=1 ζ = 1,

This is because Γ 6= 0 and so ζ does not have any more poles than
ζ∗.

Corollary 0.9. ζ(−2n) = 0 for n = 1, 2, . . . .
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These are called the “trivial” zeros of ζ(s). The nontrivial zeros are
the zeros of ζ∗.

0.6. Euler products for Hecke eigenforms. Assume that f ∈ Sk
is a normalized Hecke eigenform: T (n)f = λf (n)f , af (1) = 1, so that
the Fourier expansion is

f(τ) =
∑
n≥1

λf (n)qn

The corresponding Dirichlet series is then

D(s, f) =
∑
n≥1

λf (n)n−s

Since λf is multiplicative, we have

D(s, f) =
∏
prime

∑
r≥0

λf (p
r)p−rs

Lemma 0.10.
∞∑
r=0

λf (p
r)Xr =

1

1− λf (p)X + pk−1X2

This is equivalent to the recursion

λf (p)λf (p
r) = λf (p

r+1) + pk−1λf (p
r−1), r ≥ 1

Corollary 0.11. Let f ∈ Sk be a cuspidal Hecke eigenform. Then

D(s, f) =
∏
p

(1− λf (p)p−s + pk−1p−2s)−1

0.7. The Riemann Hypothesis for L(s, f). If f ∈ Sk is a Hecke
eigenform, then we saw that the corresponding Dirichlet series admits
an Euler product

D(s, f) =
∑
n≥1

λf (n)n−s =
∏
p

(1− λf (p)p−s + pk−1−2s)−1

Writing the p-the factor as

1− λf (p)X + pk−1X2 = (1− α1(p)p
(k−1)/2X)((1− α2(p)p

(k−1)/2X)

= det(I −Xp(k−1)/2Ap)

where

Ap :=

(
α1(p) 0

0 α2(p)

)
, pk−1 trAp = λf (p), detAp = 1
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we have

D(s, f) =
∏
p

det(I − p−sp(k−1)/2Ap)−1

Deligne’s theorem (Ramanujan’s conjecture) |λf (p)| ≤ 2p(k−1)/2 is equiv-
alent to Ap ∈ SU(2) is unitary.

Lets normalize differently: set

L(s, f) := D(s+
k − 1

2
, f) =

∏
p

det(I − p−sAp)−1

and

L∗(s, f) = (2π)−(s+
k−1
2

)Γ(s+
k − 1

2
)D(s+

k − 1

2
, f)

which now satisfies a functional equation

L∗(s, f) = ikL∗(1− s, f)

whose symmetry axis is the line Re(s) = 1
2
. The analogue of the

Riemann Hypothesis is that all zeros of L∗(s, f) (which are called the
non-trivial zeros of L(s, f)) lie on the line Re(s) = 1/2.

This has not been established in any example.

0.8. The converse theorem. We saw that a modular form gives a
Dirichlet series with analytic continuation and a certain specific func-
tional equation. It turns out that Dirichlet series with this precise
functional equation must correspond to modular forms. This is Hecke’s
“converse theorem” (1936) for SL(2,Z).

Theorem 0.12. Let D(s) =
∑

n≥1 a(n)n−s be a Dirichlet series, with
|a(n)| � nν for some ν > 0 (so is absolutely convergent in Re(s)� 1),
so that

(1) D(s) admits an analytic continuation to all of C
(2) D(s) satisfies the functional equation (k ≥ 12 even)

Λ(s) := (2π)−sΓ(s)D(s) = (−1)k/2D(k − s),

(3) D(s) is bounded in vertical strips: Given −∞ < α < β < +∞,
there is some C(α, β) so that |D(σ + it)| < C(α, β) for σ ∈
[α, β].

Then there is some f ∈ Sk so that D(s) = D(s, f).

The proof is a simple application of Mellin inversion. One forms the
function f(τ) :=

∑
n≥1 a(n)qn, which by definition satisfies f(τ + 1) =

f(τ) and is holomorphic in |q| < 1 (i.e. τ ∈ H) since |a(n)| � nν and
vanishes at q = 0, so all that is left is to establish the transformation
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formula f(−1/τ) = τ kf(τ). Since both sides are analytic in τ , it suffices
to do so for τ = iy, y > 0. This is done by using Mellin inversion

e−t =
1

2πi

∫
Re(s)=2

Γ(s)t−sds

so that

f(iy) =
∑
n≥1

a(n)e−2πny =
∑
n≥1

a(n)
1

2πi

∫
Re(s)=2

Γ(s)(2πny)−sds

=
1

2πi

∫
Re(s)=2

Γ(s)(2π)−sD(s)y−sds =
1

2πi

∫
Re(s)=2

Λ(s)y−sds

Now use the functional equation Λ(s) = ikΛ(k − s), change variables,
shift contours and eventually recover (iy)−kf(i/y). Along the way one
needs to use that D(s) is bounded in vertical strips.


