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0.1. Arithmetic functions and Dirichlet series. An arithmetic
function is simply a function ¢ : N — C on the natural numbers.
Examples are the constant function 1, the power functions n®.

The Dirichlet convolution of two arithmetic functions a,b: N — C
is defined by

b(n) := d)b(=
axbn) = S aldH)
For instance, if we denote by 1 the constant function 1, and
oo(n) = #{d >1,d[n} =3 1
din

the number of divisors of n, then clearly

1x1= (o)
Likewise, the divisor sums
oa(n) = Z d”
dln
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are clearly the convolution
oo =1%n”

To any arithmetic function @ : N — C, which is of polynomial
growth: |a(n)| < n?, we associate a Dirichlet series

D,(s) := Za(n)n’“’7 Re(s) > A+1
n>1
which converges for Re(s) > A, and uniformly in any closed half-plane

Re(s) > A + 0, hence defines a holomorphic function for Re(s) > A.
For instance, for the constant function 1 we have

Di(s) =3 - = ls)

n>1

is the Riemann zeta function.

For the power function n®, we have
(0%

> =((s—a). Re(s)>1+Re(a)

n>1
Lemma 0.1. The Dirichlet series attached to a convolution is the prod-
uct of the two Dirichlet series:

Daws() = Da(3)Dy(5)
Corollary 0.2. The Dirichlet series Dy(s) = Y <, 0a(n)n™° associ-
ated to the divisors sum o, is the product
Da(s) = ¢(s)¢(s — )
An arithmetic function is multiplicative if a(1) # 0 and a(mn) =
a(m)a(n) whenever m, n are coprime. Necessarily then a(1) = 1.

Examples: the constant function 1, the power functions n® are mul-
tiplicative (in fact completely multiplicative).

Lemma 0.3. Ifa,b: N — C are multiplicative then so is their convo-
lution a x b.

Since o, = 1 * n®, we obtain

Lemma 0.4. The divisor sums o, are multiplicative: o,(mn) = o,(m)os(n)
if ged(m,n) = 1.

Exercise 1. The divisor sums o, satisfy for p prime and r» > 1

a(p)oa(p") = 0a(p™) + poa(p")
Lemma 0.5. If a : N — C is multiplicative then for Re(s) > 1,

Dus)= [ Sa(p™

p prime r>0
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0.2. The Dirichlet series attached to a modular form. Let 0 #
f € Mj be a modular form of weight k, with Fourier expansion f =
Y ns0@7(n)q". The associated Dirichlet series is, for s € C, Re(s) > 1

Dis. ) =y 4

Note that we ignore the zero’th coefficient a¢(0). Recall that we showed
that for any F' € My, the Fourier coefficients satisfy |as(n)| < n*~!
(and better bounds for cusp forms). Hence the series converges for
Re(s) > k, and uniformly in any closed half-plane Re(s) > k4§, hence
defines a holomorphic function for Re(s) > 1.

0.3. Eisenstein series. The normalized Eisenstein series has Fourier
expansion

Ey =1+ Z ok—1(n)q¢"

n=1

Hence the associated Dirichlet series is (a multiple of)
D(s) =) op-1(n)g"
n>1

We have already computed this Dirichlet series, so that we find
D(s, Ey) = ((s)¢(s — (k= 1))

0.4. Analytic continuation and functional equation. The Gamma
function is defined for Re(s) > 0 as

> dt
[(s) := / et —
0 t

Integration by parts shows that in this regime, we have the functional
equation

I'(s+1)=sI(s)
so that in particular we obtain that for n > 1 integer, I'(n + 1) = n!
and using the functional equation we obtain that I' has meromorphic
continuation to the entire complex plane, save for simple poles at the
non-negative integers s =0, —1, -2, —3,....
Exercise 2. Compute the residue Res,—_,, I'(s).
Theorem 0.6. Let f € S be a cusp form (k > 12 even). Set
As(s) == (2m)~°T'(s)D(s, f), initially defined for Re(s) > 1. Then
D(s, f) admits an analytic continuation to the entire complex plane,
and satisfies the functional equation

Af(S) = Z_kAf(k? — S)



4 ZEEV RUDNICK

Proof. We first give an integral representation of Af(s). Consider the
integral (Mellin transform)

I(s) = / N f(iy)ys%

Recall that a cusp form decays exponentially at infinity: |f(x +1y)| <
e~ as y — +00, so the integral converges at y = oo for all s, and for
y — 0, we use the modular transformation formula f(—1/7) = 7% f(7)
for 7 = 1y
. 1. 1
i) = () H=)

to deduce that |f(iy)| < y™*e 2™/¥ as y — 0, so that the integral also
converges at y = 0 if for all s. Hence I(s) is an entire function.

Now insert the Fourier expansion

fiy) =) as(n)e™

n>1

I(s) = Z ag(n) /000 e’meys@

n>1 Yy
Changing variables gives

> d
/ 6_2”"yys—y = (2mn)"°I'(s)
0 Y

to find

so that
1(5) = (2m) T () Y ag(mn™ = As(s)
n>1
which shows that Ay(s) is entire.
It remains to prove the functional equation. Separate the integral as

I<s>=/ylo+/1°°

Using the transformation formula for f, we write

! : s@_ 1ik _i sd_y_~fk ! 2 sfk@
/Of(zy)yy—/o( A LA /Of(y)y -

iy Wy
Now change variables y' = 1/y:

_ sk > ./ /k—sd_y/
=i /1f(2y)(y) .y

so that we obtain
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Hence, using i % = i* for k even,

I(h—s) = / " i) (v y)d—yy — #1(s)
O

0.5. Analytic continuation and functional equation for Rie-
mann’s zeta function. The above proof of the functional equation
for Dirichlet series attached to cusp forms is modeled on one of Rie-
mann’s proofs of the corresponding fact for the Riemann zeta function,
except that there is an extra step which leads to a pole. The result is

Theorem 0.7. Let (*(s) := 7 */2I'(£)((s). Then (*(s) is analytic
except for simple poles at s = 0 and s = 1, and has a functional
equation

¢(s) =" (1 =)

Proof. The completed Riemann zeta function (* is essentially the Mellin
transform of the one variable theta function

9(7_) _ an2/2 _ Z eiT(TL2T

nez neZ
Precisely, set
1/, 2
w(y) = 5(9(@?;) - 1) = ;6 Y

and consider the integral

s) == oow 5/2@
1) = [ty

The integral converges for all s at y = oo, since w(y) K e ™ as y — 0.
To understand convergence at y = 0, recall the transformation for-
mula of the one-variable theta function

O(—1/7) = \/—_2'7'0(7)

In particular, taking 7 = iy (which is the way we proved it...)

7 .
9(;) = Vy0(iy)
so that as y — 0, since 0(iy) — 1 as y — 0,
1
0(iy) ~ —
(iy) 7
and hence
1 1

Y~ a2
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s/2dy

Thus the integral I(s) converges at y = 0 like that of fol ﬁgy 2,

namely for Re(s) > 1.
Then for Re(s) >

Z/ o=y S/2dy Z(Wn) S/QF( ) =:¢"(s)

n>1 n>1

L)

The integral floo is absolutely convergent for all s € C so is an entire

Now split the integral as

function. To treat the integral fol, change variables y = 1/t

! dy /CO 1 dt
s/2 —s/2

w -7 )¢ -

/0 (Y)y Y ) W(t> t

The functional equation of theta 6(i/t) = \/t0(it) gives

w(1> = %(ﬂe(zt) - 1) = Viw(t) + Vil

t 2

/w(l)tﬂpﬂ:/ tlfﬂ / \/_ S/th
1 t t 1

The first integral converges for all s, hence is an entire function of s,
while the second integral is explicitly evaluated as

/ \/ S/th 1 1

Hence

1—s s

R e R Al G

Both summands are clearly symmetric under s — 1—s, so that (*(s) =
(*(1 — s), and the integral is entire, and so we find that (*(s) has an
analytic continuation to all of C except for simple poles at s =0,1. [

Thus

Corollary 0.8. The Riemann zeta function has an analytic continu-
ation to the entire complex plane except for a simple pole at s = 1,
where Resg—1 ¢ =1,

This is because I' # 0 and so ( does not have any more poles than
¢
Corollary 0.9. ((—2n) =0 forn=1,2,....
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These are called the “trivial” zeros of ((s). The nontrivial zeros are
the zeros of (*.

0.6. Euler products for Hecke eigenforms. Assume that f € S,
is a normalized Hecke eigenform: T'(n)f = A¢(n)f, af(1) = 1, so that
the Fourier expansion is

fr) =Y Ar(n)g"

n>1

The corresponding Dirichlet series is then
D(s. f) = > Arln)n™

n>1

Since Ay is multiplicative, we have
D(s.f)y= [T Do nw
prime r>0

Lemma 0.10.

> 1
A (P X" =
; s(2") 1—A(p)X + ph1X2

This is equivalent to the recursion
M)A ") = A ) PN, >l
Corollary 0.11. Let f € Sy be a cuspidal Hecke eigenform. Then
D(s, f) = [J(1 = Ap(p)p~* +p*'p )

p

0.7. The Riemann Hypothesis for L(s, f). If f € Sy is a Hecke
eigenform, then we saw that the corresponding Dirichlet series admits
an Euler product

D(s, f) =Y Mnn= = [0 = As(p)p~ +p*72)7"

n>1 P
Writing the p-the factor as
L= ()X +p"1X% = (1= au(p)p™ V2 X)((1 — an(p)p™V72X)
= det(I — Xp*=D/24,)

where

A, = <0‘1<p) y ) PN A, = Ap(p), detA, =1
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we have
D(s, f) = [ [ det(r — p=op*=/24,) !
p
Deligne’s theorem (Ramanujan’s conjecture) |A;(p)| < 2p~1/2is equiv-
alent to A, € SU(2) is unitary.
Lets normalize differently: set

L(s, f):=D(s+ %, f)= Hdet([ —p A

and
L*(s, f) = (27?)_(5+%)F(s - %)D(s + %, f)

which now satisfies a functional equation

L*(S, f) = ZkL*(l -5 f)

whose symmetry axis is the line Re(s) = 3. The analogue of the

Riemann Hypothesis is that all zeros of L*(s, f) (which are called the
non-trivial zeros of L(s, f)) lie on the line Re(s) = 1/2.
This has not been established in any example.

0.8. The converse theorem. We saw that a modular form gives a
Dirichlet series with analytic continuation and a certain specific func-
tional equation. It turns out that Dirichlet series with this precise
functional equation must correspond to modular forms. This is Hecke’s
“converse theorem” (1936) for SL(2,Z).

Theorem 0.12. Let D(s) = > -, a(n)n™* be a Dirichlet series, with
la(n)| < n” for some v >0 (so is absolutely convergent in Re(s) > 1),
so that

(1) D(s) admits an analytic continuation to all of C
(2) D(s) satisfies the functional equation (k > 12 even)

A(s) == (27)°T'(s)D(s) = (=1)*?D(k — s),
(3) D(s) is bounded in vertical strips: Given —oo < a < ff < 400,
there is some C(«, B) so that |D(o + it)] < C(«a, ) for o €
[, B].
Then there is some f € Sy so that D(s) = D(s, f).

The proof is a simple application of Mellin inversion. One forms the
function f(7) :=3_ -, a(n)q", which by definition satisfies f(7+ 1) =
f(7) and is holomorphic in |¢| < 1 (i.e. 7 € H) since |a(n)| < n” and
vanishes at ¢ = 0, so all that is left is to establish the transformation
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formula f(—1/7) = 7% f(7). Since both sides are analytic in 7, it suffices
to do so for 7 =4y, y > 0. This is done by using Mellin inversion

1

et = — [(s)t™*ds
2mi Re(s)=2 (
so that
fliy) = Z e I = Za n 27m [(s)(2mny)*ds
n>1 n>1 Re(s)=2
: I(s)(2r) " D(s)y~"ds = Als)y~ds

— s)(2m §=—
" 2 Re(s)=2 270 JRe(s)=2

Now use the functional equation A(s) = i*A(k — s), change variables,
shift contours and eventually recover (iy)~*f(i/y). Along the way one
needs to use that D(s) is bounded in vertical strips.



